APRIL 2007 VOLUME 26 ISSUE 1 #### INSIDE THIS ISSUE | Upcoming Events 4 | |--| | Irrigated Agriculture is an Engine for Economic Activity in Rural Communities5 | | Meet the Faculty 6 | | Limited Irrigation Alfalfa | | Estimated Yield of Some Alternative Crops Under Varying Irrigation in Northeast Colorado | | Yield Impact of Growth Stage Irrigation of Sunflowers 10 | | The Effects of Drip Irrigation on Corn Yield and Soil Salinity in the Arkansas Valley | | Effects of Water Stress on Corn Production | | Limited Irrigation and Crop Rotation Project Studies Methods to Reduce Consumptive Use | | USDA – Agricultural Research Service
Initiates Limited Irrigation Project 17 | | Limited and Full Irrigation Comparison for Corn and Grain Sorghum18 | | Research/Outreach Team to Develop
Rural-Urban Water Model 19 | | cimited Irrigation References and Resources on the Web 20 | # Extension # FROM THE GROUND UP Afronomy News # Limited Irrigation Management – Getting the Most Crop per Drop # **Principles and Practices** by Joel Schneekloth, Extension Northern Region Water Resource Specialist Colorado producers irrigate approximately three million acres of pasture, hay, and row crops yielding receipts worth more than five billion dollars per year. However, irrigation water availability for these enterprises is declining. Dwindling agricultural water supplies due to drought, compact compliance requirements, urban transfers, alluvial well pumping restrictions, and declining ground water from non-renewable aquifers has reduced the water available to irrigated agriculture. These water shortages have been occurring in almost every irrigated watershed and # Estimated Yield of Some Alternative Crops Under Varying Irrigation in Northeast Colorado by David C. Nielsen, Research Agronomist, USDA-ARS, Central Great Plains Research Station Much of the irrigated acres in northeastern Colorado are devoted to corn grain production. Diversifying irrigated agricultural production in this region could result in water savings if alternative crops were grown that have lower water requirements than corn. Making such crop choice decisions initially requires knowledge of how yields of new crops respond to water. Over a number of years, water use/yield production functions have been developed at the Central Great Plains Research Station near Akron. Such functions predict yield based on a linear relationship between total water use and crop yield. Water use is considered to be the sum of soil water extracted from the soil by the crop, growing season precipitation, and irrigation applied during the growing season. Production functions for three oilseeds, four legumes, three forages, and corn grain are shown in Table 1. These 11 production functions (along with six others) are available for easy use in a simple Excel spreadsheet (the Central Great Plains Yield Calculator, available from the author) that also includes average growing season precipitation for 15 locations in eastern Colorado, western Nebraska, and western Kansas. The calculator assumes that water is the controlling factor for yield, and that other factors (such as date of planting, fertility, weed control, insect control, timing of precipitation and irrigation, and harvest efficiency) are optimal. The calculator also assumes that there are no significant weather influences such as hail, frosts, or excessive wind that would adversely affect yield. Using the Yield Calculator can give a farmer an idea about the yield response of TO SERVICE STREET an alternative crop to the irrigation water that he would apply. Table 2 shows estimated yields for the crops whose production functions were given in Table 1 for four irrigation levels and assuming 6 inches of water was used from the soil. Average growing season precipitation was assumed for three locations in northeastern Colorado (Briggsdale, Limon, and Wray). ## Oilseed Response to Irrigation Of the three oilseed crops shown in Table 1, canola exhibits the largest response to water (175 lb/a/inch) while safflower shows the smallest response (121 lb/a/inch). Predicted yields at Briggsdale range from 1568 lb/a with 3 inches of irrigation to 3145 lb/a with 12 inches of irrigation. Yields at all irrigation levels are lower for safflower and sunflower compared with canola, and greater in Limon and Wray compared with Briggsdale as precipitation increases moving west to east. The highest predicted yield (3548 lb/a) comes from canola grown at Wray with 12 inches of irrigation. ## Legume Response to Irrigation Legume seed response to water ranges from 148 lb/a/inch for soybean to 240 lb/a/inch for chickpea (Table 1). With 3 inches of irrigation, the greatest legume seed yield at Briggsdale was predicted for pea (2598 lb/a) and the least from dry bean (1823 lb/a). With 12 inches of irrigation, the greatest seed yield was predicted for chickpea (4645 lb/a). As with predicted oilseed yield, Table 1. Production functions used in the Central Great Plains Yield Calculator for three oilseed crops, four legumes, three forage crops, and corn. | Crop | Production function | |------------------|---| | Oilseeds | 2 Todaecton function | | canola | lb/a = 175 2*//mah | | safflower | lb/a = 175.2*(inches water use - 6.22) | | sunflower | lb/a = 121.4*(inches water use – 3.02) | | Legumes | lb/a = 150.6*(inches water use - 6.88) | | pea | lb/a = 181.4*(inches water use - 0.85) | | chickpea | 16/4 = 240.4* (inches water use -5.80) | | soybean | lb/a = 148.1*(inches water use - 5.80) | | dry bean | | | Porages | lb/a = 193.0*(inches water use - 5.50) | | forage triticale | lb/a = 748.4*(inches) | | foxtail millet | lb/a = 748.4* (inches water use - 3.39) | | corn silage | lb/a = 664.4* (inches water use – 3.07) | | tarchy Grain | lb/a = 548.8*(inches water use – 5.31) | | corn | lb/a = 582.2*(inches water use - 9.13) |